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Fructose-induced stress signaling in the liver

involves methylglyoxal
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Abstract

this insult.

MKK?, JNK and IRS proteins.

hepatocytes.

Background: Fructose produces hepatic insulin resistance in humans and animals. We have proposed that the
selective metabolism of fructose by the liver can, under conditions of elevated fructose delivery, inflict a metabolic
insult that is localized to the hepatocyte. The present study was designed to identify potential cellular effectors of

Methods: Primary hepatocytes were incubated with 8 mM glucose and 0.12% inulin (G, n=6) or 8 mM glucose,
0.12% inulin and 28 mU of inulinase (GF, n=6) in the presence or absence of insulin for 0, 2, or 4 h.

Results: GF produced fructose concentrations of ~0.7 mM over the 4 h experiment. GF induced phosphorylation of
MKK7 and JNK, phosphorylation of serine307 on IRS-1, and reduced tyrosine phosphorylation of IRS-1 and -2. GF
increased ceramide levels and reactive oxygen species (ROS); however inhibitors of ceramide synthesis or ROS
accumulation did not prevent GF-mediated changes in MKK7, JNK or IRS proteins. GF increased cellular
methylglyoxal concentrations and a selective increase in methylglyoxal recapitulated the GF-induced changes in

Conclusions: We hypothesize that GF-mediated changes in stress signaling involve methylglyoxal in primary

Keywords: Sucrose, Insulin resistance, Mitogen-activated protein kinase

Background

Fructose is an intriguing nutrient due, in part, to its se-
lective hepatic metabolism. The annual per capita con-
sumption of extrinsic or added sucrose and fructose has
increased in the US population [1,2]. In rats, diets
enriched in sucrose or fructose can produce hepatic insu-
lin resistance independently of changes in body compos-
ition [3-5]. Sucrose-induced hepatic insulin resistance
occurred concomitantly with elevated hepatic c-jun
NH,-terminal kinase (JNK) activity, and normalization of
JNK activity in isolated hepatocytes improved insulin-
stimulated tyrosine phosphorylation of insulin receptor
substrate (IRS) proteins and insulin suppression of glucose
release [6]. The ingestion of a single, sucrose-enriched
meal or elevation of portal vein fructose concentrations
via fructose infusion in rats in vivo also increased hepatic
JNK activity and phosphorylation of insulin receptor
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substrate-1 (IRS-1) on serine®”, a downstream target of

JNK [6]. Fructose infusions in humans can also induce
hepatic insulin resistance [7]. The mechanisms leading to
these changes remain unclear.

We have proposed that the selective metabolism of
fructose by the liver can, under conditions of elevated
fructose delivery, inflict a metabolic insult that leads to
insulin resistance and involves the hepatocyte [8]. The
aim of the present manuscript was to identify potential
cellular effectors that mediate fructose-induced activa-
tion of stress signaling (JNK) and insulin resistance.
Candidate mediators included ceramide, reactive oxygen
species and methylglyoxal all of which can activate JNK
and accumulate in the context of excessive carbohydrate
metabolism [8-11].

Materials and methods

Materials

Glucose, inulin, inulinase, insulin, and methylglyoxal
were purchased from Sigma Chemical Co (St. Louis,
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MO). Primary antibodies were purchased from Cell
Signaling (Beverly, MA).

Animals

Male Wistar Crl:(WI)BR rats (Charles River Laboratories,
Wilmington, MA) weighing 120-150 grams were provided
free access to a purified high-starch diet (Research Diets,
Inc, New Brunswick, NJ) for 1 week. All procedures were
reviewed and approved by the Colorado State University
institutional animal care committee.

Hepatocyte isolation and culture

Hepatocytes were isolated from rats by collagenase perfu-
sion [12]. Viability, based on trypan blue exclusion, was >
90%. Cells were first incubated with Roswell Park Memorial
Institute media (RPMI) 1640 containing 11 mmol/L glu-
cose, 107 mol/L dexamethasone, 107 mol/L insulin on
collagen-coated plates containing 5% FBS for 4 h. Following
attachment, the media was changed to one containing

Page 2 of 8

RPMI, 8 mmol/L glucose, 10”7 mol/L dexamethasone, and
10® mol/L insulin. The following morning media was re-
placed by RPMI containing glucose but not dexamethasone
or insulin. After a 4 h period, experimental treatments were
performed in the absence or presence of insulin. Each ex-
periment was performed in triplicate.

Experimental model

To perform these studies, a fructose regenerating system
developed by Phillips et al. [13] was employed. In brief,
inulinase and inulin were used to generate fructose at a
rate designed to match fructose utilization. This delivery
system minimizes disturbances in ATP and redox status
that result from exposing cells to high concentrations of
fructose or to nutrient limitation which can easily occur
with fructose [6,14,15]. Primary rat hepatocytes were in-
cubated with 8 mM glucose and 0.12% inulin (G, n=6)
or 8 mM glucose, 0.12% inulin and ~28 mU inulinase
(GE, n=6) in the absence or presence of 1 nM insulin
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Figure 1 Role of ceramide and oxidative stress in fructose-mediated stress signaling. Ceramide (left) or DCF fluorescence (right)
(A), phosphorylation of MKK7 (B), and phosphorylation JNK (C) in primary hepatocytes in response to glucose (G) or glucose and fructose (GF)
in the absence (- insulin) or presence (+ insulin) of insulin. When present fumonisin B1 was at 50 uM and taurine at 1% w/v. Data in graphs are the
mean =+ SDEV for 6 independent experiments performed in triplicate. Experiments were 4 h in duration. * significantly different from G (p < 0.05).
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for 0, 2, or 4 hrs. In studies utilizing methylglyoxal in
the media (MG, n = 6) incubations were performed with
8 mM glucose, 0.12% inulin, and methylglyoxal in the
absence or presence of 1 nM insulin for 4 hrs.

Media analyses

Glucose and fructose concentrations were determined
using standard enzymatic procedures [16]. Methylglyoxal
was measured by an o-phenylenediamine (PD) method
[17]. Perchloric acid-precipitated samples were supple-
mented with 100 mM o-PD and the quinoxaline
derivative of methylglyoxal (2-methylquinozaline) and
the quinoxaline internal standard (5-methylquinoxaline)
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were then measured by high-performance liquid chro-
matography (Millipore).

Immunoprecipitation and western blot analysis

Cells were processed using previously described proce-
dures [6]. Immunoprecipitation of IRS-1 and IRS-2
was performed using Dynabeads Protein G (Novex,
Life Technologies). Briefly, equivalent amounts of pro-
tein were incubated with antibodies against IRS-1 or
IRS-2 followed by incubation with Dynabeads Protein G.
Western blot analysis for IRS-1, IRS-2 and tyrosine phos-
phorylation of IRS-1 and IRS-2 proceeded as described
below. Equal amounts of immunoprecipitate or protein
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Figure 2 Role of ceramide and oxidative stress in fructose-mediated insulin signaling. Tyrosine phosphorylation of IRS1 (A), phosphorylation of
serine 307 on IRST (B), and tyrosine phosphorylation IRS2 (C) in primary hepatocytes in response to glucose (G) or glucose and fructose (GF) in the
absence (- insulin) or presence (+ insulin) of insulin. When present fumonisin B1 (left) was at 50 uM and taurine (right) at 1% w/v. Data in graphs are
the mean =+ SDEV for 6 independent experiments performed in triplicate. Experiments were 4 h in duration. * significantly different from G (p < 0.05).
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were separated by SDS-PAGE, electrotransferred to
Hybond-P membranes and membranes incubated with
the antibodies described in the Results section. Detection
was performed using enhanced chemiluminescence re-
agents (Santa Cruz Biotechnology, Santa Cruz, CA) and
band intensity was analyzed by optical density (UVP
Bioimaging system, Upland, CA).

Analysis of Akt

Total and phosphorylated (serine 473) Akt was deter-
mined using the STAR (Signal Transduction Assay
Reaction) ELISA kit (Millipore) per the manufac-
turer’s instructions. This kit is based on a solid phase
sandwich enzyme-linked immunosorbent assay in
which 96-well plates are coated with a monoclonal
Akt antibody and following incubation with cell ly-
sates Akt is detected using a specific rabbit anti-Aktl
antibody or phosphorylated Akt is detected using a
specific rabbit anti-phospho-Akt (Ser473) antibody.

Oxidative stress

2,7-dichlorofluorescein di-acetate (DCFH-DA) fluores-
cence was used to estimate oxidative stress [18,19]. Fol-
lowing treatment, cells were loaded with 5 uM DCFH-DA
(Molecular Probes) using serum free media for 45 min at
37°C. Fluorescence was monitored with excitation and
emission wavelengths of 490 and 535 nm, respectively.
Data are reported as the fold increase in median fluores-
cence over control cells.
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Ceramide

Ceramide was determined by a modification of the
diacylglycerol kinase assay using [y->*P] ATP and quan-
titation of the radioactive spot corresponding to
ceramide- 1-phosphate [20,21].

Statistical analysis

All data are reported as the mean + standard deviation.
Two-way repeated measures ANOVA was used for data
analysis with post-hoc analyses that included linear con-
trasts and Student-Newman-Keul’s test. An a-level of
p < 0.05 was used for statistical significance.

Results

Role of ceramide and oxidative stress in fructose-
mediated stress signaling

The fructose regenerating system resulted in stable
fructose concentrations of 0.66 + 0.08 mM over the
course of the 4 h experiment. Ceramide and reactive
oxygen species can activate JNK [22-25]. Fructose de-
livery (GF) increased ceramide concentration and oxi-
dative stress (Figure 1). Prevention of the fructose-
mediated increase in ceramide or oxidative stress, using
fumonisin B1 or taurine, respectively, did not mitigate
the phosphorylation of MKK-7, JNK or serine®” of
IRS-1 (Figures 1 and 2). In addition, the presence of
fumonisin Bl or taurine did not increase insulin-
stimulated tyrosine phosphorylation of IRS-1 or IRS-2
(Figure 2) or phosphorylation of Akt (Figure 3).
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Figure 3 Role of ceramide and oxidative stress in fructose-mediated phosphorylation of Akt. Total (A) and phosphorylated (serine 473)
(B) Akt in primary hepatocytes in response to glucose (G) or glucose and fructose (GF) in the absence (- insulin) or presence (+ insulin) of insulin.
When present fumonisin B1 (left) was at 50 uM and taurine (right) at 1% w/v. Data in graphs are the mean + SDEV for 6 independent
experiments performed in triplicate. Experiments were 4 h in duration. * significantly different from G (p < 0.05).
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Fructose-mediated changes in methylglyoxal

Fructose delivery (GF) increased methylglyoxal concentra-
tions by approximately 100% in the absence or presence
of insulin at both 2 and 4 h (Figure 4). In separate experi-
ments primary hepatocytes were incubated with varying
concentrations of methylglyoxal in the media in order to
determine what media concentration elicited a similar cel-
lular methylglyoxal concentration to that observed with
fructose (ie. ~2 nmol/mgprotein). A media methylglyoxal
concentration of 20 uM resulted in liver cell methylglyoxal
concentrations of ~2 nmol/mg protein (Figure 4).

Methylglyoxal recapitulates the effects of fructose on
stress signaling

Incubation of primary hepatocytes with methylglyoxal
(media concentration of 20 uM) for 4 h increased the
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Figure 4 Methylglyoxal concentration in response to fructose
delivery and media methylglyoxal. Liver cell methylglyoxal
concentration in response to glucose (G) or glucose + fructose (GF)
delivery in the absence or presence of insulin (A) or in response to
varying media methylglyoxal concentrations (B). Data in graphs are
the mean + SDEV for 6 independent experiments performed in
triplicate. Experiments were 4 h in duration. * significantly different

from G (p < 0.05).
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phosphorylation of MKK7, JNK and serine®*” of IRS-1
in the absence and presence of insulin (Figure 5).
Methylglyoxal also reduced insulin-stimulated tyrosine
phosphorylation of IRS-1 and IRS-2 (Figure 5).

N-acetyl cysteine (NAC) reduces methylglyoxal and
fructose-mediated stress signaling

NAC is an antioxidant and methylglyoxal scavenger
[26,27]. Incubation of primary hepatocytes with NAC over
a 4 h period reduced fructose- and methylglyoxal-mediated
increases in methylglyoxal, phosphorylation of MKK7, JNK
and serine®” of IRS-1 in the absence and presence of insu-
lin (Figure 6). The presence of NAC also increased tyrosine
phosphorylation of IRS-1 and IRS-2 (Figure 6), and phos-
phorylation of Akt (Figure 7).

Discussion

The present study, similar to our previous studies [6], dem-
onstrates that increased fructose delivery activates MKK7
and JNK, and modifies the phosphorylation state of IRS-1 in
rat primary hepatocytes. New data demonstrate that fructose
delivery increased liver cell methylglyoxal concentrations
within a time frame consistent with modifications in the
phosphorylation state of MKK7, JNK and IRS-1. In
addition, selective elevation of cellular methylglyoxal con-
centrations recapitulated the effects of fructose on these
proteins. Finally, when the increase in methylglyoxal was
prevented using N-acetyl cysteine, fructose-mediated
changes in stress and insulin signaling were reduced.
These data are consistent with the notion that acute ef-
fects of fructose delivery on stress signaling may be medi-
ated by changes in cellular methylglyoxal.

Fructose delivery to and metabolism in the hepatocyte
generates a signal that culminates in the activation of
JNK, phosphorylation of serine®”” of IRS-1 and reduced
insulin-stimulated tyrosine phosphorylation of IRS-1 and
IRS-2 [6]. We have hypothesized that this response to
fructose delivery results from the burden of fructose me-
tabolism [28]. However, the intrahepatic signal(s) that
mediate fructose-induced stress signaling and modula-
tion of insulin signaling have not been identified. In the
present study, we examined three potential intrahepatic
signals that can promote JNK activation and modulation
of IRS-1 phosphorylation; ceramide, oxidative stress and
methylglyoxal [11,23,25,29]. Although fructose delivery in-
creased all three of these signals, inhibition of the increase
in ceramide using fumonisin B1, or oxidative stress, using
taurine, did not reduce fructose-mediated effects on stress
or insulin signaling. In contrast, experiments in which
cellular methylglyoxal concentrations were selectively ele-
vated to levels observed with fructose delivery resulted in the
activation of stress signaling and reductions in insulin signal-
ing. In addition, the presence of N-acetyl cysteine, which ef-
fectively reduced cellular methylglyoxal concentrations,
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Figure 5 Stress and insulin signaling in primary hepatocytes. Phosphorylation of MKK7, JNK, serine 307 of IRS-1 and tyrosine phosphorylation
of IRS-1 and IRS-2 in primary hepatocytes in response to methylglyoxal in the absence (A) or presence (B) of insulin. Data in graphs are the mean
+ SDEV for 6 independent experiments performed in triplicate. * significantly different from No Additions (p < 0.05).

reduced fructose- and methylglyoxal-mediated effects on
stress and insulin signaling. These data are consistent with
the notion that acute effects of fructose delivery on hep-
atocyte stress and insulin signaling are mediated by
methylglyoxal.

Increased methylglyoxal concentrations have been ob-
served in patients with diabetes and have been associated
with progression of diabetic nephropathy [30]. Metformin,
which has been used to lower elevated methylglyoxal con-
centrations in type 2 diabetic patients, was also able to
prevent the development of sucrose-induced insulin resist-
ance in rats [31,32]. Increased methylglyoxal has also been
linked to impairments in insulin signaling in adipose tissue
of fructose-fed rats [33]. Thus, several studies have sug-
gested a link between the accumulation of methylglyoxal
and glucose homeostasis.

Methylglyoxal can interact readily with certain arginine
and lysine residues in proteins, leading to increased glycation
of proteins and advanced glycation end products, such as N-
epsilon-carboxyethyl-lysine and N-epsilon carboxymethyl-
lysine [34,35]. In vascular smooth muscle cells, very high

fructose concentrations (15 mM) increased methylglyoxal
and peroxynitrite production, which was inhibited by react-
ive oxygen scavengers such as reduced glutathione or N-
acetyl-l-cysteine [34]. In the present study, although fructose
increased DCF fluorescence, amelioration via taurine did not
result in a reduction of fructose-mediated stress signaling.
Thus, the acute effects of fructose on methylglyoxal concen-
trations and fructose-mediated changes in stress and insulin
signaling may operate independently of oxidative stress. It is
important to emphasize that N-acetyl cysteine can act as
both an anti-oxidant and a methylglyoxal scavenger [26,27].
Increased fructose consumption and therefore delivery
appears to have multiple effects in vivo. Our data suggest
that fructose may have rapid, direct effects on the liver that
activate stress signaling pathways and reduce insulin signal-
ing. We propose that these effects are largely mediated by
local metabolism of fructose in the hepatocyte and perhaps
generation of methylglyoxal. Future studies are needed to
understand whether and how methylglyoxal mediates these
fructose-induced changes. These hepatocyte-specific effects
of fructose likely also contribute to lipid accumulation
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Figure 6 Effects of N-acetyl cysteine on fructose- and
methylglyoxal- mediated stress and insulin signaling in
primary hepatocytes. Methylglyoxal concentration (A),
phosphorylation of MKK7 and JNK (B), and tyrosine
phosphorylation of IRS-1 and IRS-2 (C) in primary hepatocytes
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independent experiments performed in triplicate. * significantly
different from No Additions (p < 0.05).
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methylglyoxal- mediated phosphorylation of Akt. Total (A) and
phosphorylated (serine473) (B) Akt in primary hepatocytes incubated
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(20 uM). Data in graphs are the mean + SDEV for 4 independent
experiments performed in triplicate. * significantly different from No
Additions (p < 0.05).

within the hepatocyte [3]. Recent studies have also demon-
strated that fructose consumption in beverages or water
can lead to accumulation of visceral fat and changes in in-
testinal barrier function [36,37]. Thus, overconsumption of
sucrose and fructose can lead to adaptations in multiple
organ systems. However, the quantitative contribution of
sucrose and fructose consumption in foods and beverages
to human metabolic diseases such as the metabolic
syndrome and non-alcoholic fatty liver diseases remains
unclear.

The cell system used in the present study, although of-
fering several advantages, does not mimic the dynamic
nature of in vivo dietary nutrient delivery. With this in
mind, this cellular system was employed only after stud-
ies that demonstrated that diets enriched in sucrose or
fructose, or fructose infusion in rats in vivo, increased
stress signaling and reduced insulin signaling in the liver
in vivo [3,6,38]. It is likely that the magnitude of hepatic

stress induced by fructose will ultimately depend on the
concentration presented to the liver, the duration of ex-
posure to increased fructose delivery, as well as multiple
biologic and perhaps genetic factors [8,39,40].

In the present study, we have examined the effects of
physiologic concentrations of fructose on stress and insulin
signaling in primary hepatocytes. Our results suggest that in-
crease fructose delivery to hepatocytes modulates stress and
insulin signaling. We hypothesize that fructose-mediated
changes in methylglyoxal contribute to these acute effects.
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