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Abstract

Background: Obesity and osteoporosis, two possibly related conditions, are rapidly expanding health concerns in
modern society. Both of them are associated with sedentary life style and nutrition. To investigate the effects of
diet-induced obesity and voluntary physical activity we used high resolution micro-computed tomography (μCT)
together with peripheral quantitative computed tomography (pQCT) to examine the microstructure of the distal
femoral metaphysis in mice.

Methods: Forty 7-week-old male C57BL/6J mice were assigned to 4 groups: control (C), control + running (CR),
high-fat diet (HF), and high-fat diet + running (HFR). After a 21-week intervention, all the mice were sacrificed and
the left femur dissected for pQCT and μCT measurements.

Results: The mice fed the high-fat diet showed a significant weight gain (over 70% for HF and 60% for HFR), with
increased epididymal fat pad mass and impaired insulin sensitivity. These obese mice had significantly higher
trabecular connectivity density, volume, number, thickness, area and mass, and smaller trabecular separation. At the
whole bone level, they had larger bone circumference and cross-sectional area and higher density-weighted
maximal, minimal, and polar moments of inertia. Voluntary wheel running decreased all the cortical bone
parameters, but increased the trabecular mineral density, and decreased the pattern factor and structure model
index towards a more plate-like structure.

Conclusions: The results suggest that in mice the femur adapts to obesity by improving bone strength both at
the whole bone and micro-structural level. Adaptation to running exercise manifests itself in increased trabecular
density and improved 3D structure, but in a limited overall bone growth.

Background
Bone strength/quality is not only determined by bone
mineral density/mass alone but also by its geometrical
structure and distribution in space. Both peripheral
quantified computed tomography (pQCT) and micro-
computed tomography (μCT) have thus been used in
recent years for rodent skeleton measurements. Since the
first application of pQCT to the mouse skeleton density
measurement was reported in 1996 [1], it has been fre-
quently used to measure the volumetric bone mineral
density and geometrical parameters of trabecular and

cortical bone in vivo or ex vivo. However, due to its
limited resolution, pQCT has failed to obtain information
on the trabecular microstructure. The introduction
of μCT with at best a submicrometer resolution in
biomedical research has made accurate assessment of the
material microstructure possible. Based on different
algorithms, the 3D structure and related parameters of
bone can be obtained. They describe the properties of
bone better than the “golden standard” histomorphome-
try based on stereological assumptions.
Osteoporosis and obesity are two common complex

diseases with serious health-related consequences. These
two disorders of the body composition have usually
been considered separately, but more recently both
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clinical and experimental data have established a close
link between them [2]. Epidemiological data and animal
studies indicate that these two diseases share several fea-
tures including a genetic predisposition and a common
progenitor cell [3], and both are influenced by nutrition
and a sedentary life style [4]. Obesity is a condition of
excessive body fat that causes or exacerbates the risk
for developing non-insulin dependent diabetes, cardio-
vascular diseases, cancer, and other diseases [5], and is
associated with chronic inflammatory status [6]. Osteo-
porosis is a disease characterized by low bone mass and
structural deterioration of bone tissue, leading to bone
fragility and increased susceptibility to fractures.
Nutrition, including dietary fat [7] and restricted calo-

ric intake [8], are related to molecular markers of bone
remodelling and may contribute to the risk for bone-
related diseases [9]. Diets high in saturated fat can
adversely affect bone mineralization [10]. Diet compo-
nents are also closely associated with obesity in both
humans [11] and animals [12]. A recent genetic linkage
analysis between obesity and osteoporosis has found evi-
dence of genetic influences behind these two disorders
being related and likely mapped to many of the same
quantitative trait loci [13]. These linkages have also
been documented in previous epidemiological investiga-
tions, where obesity has been associated with bone
mass, strength and density [14,15]. Furthermore, there is
abundant evidence that adipose tissue, as an endocrinal
organ, affects bone metabolism through secreted adipo-
kines, especially leptin [16,17]. Together with secreted
inflammatory factors, these adipokines alter the bone
microenvironment and regulate bone modelling and
remodelling. However, whether these relations are posi-
tive or negative remains controversial.
In obese subjects, physical activity has been shown to

be an efficient tool to treat obesity-related diseases and
improve the quality of life, and also to improve bone
quality in both humans [18] and animals [19]. Consis-
tently, our previous study with twin pairs showed that
long-term leisure time physical activity has positive
effects on both trabecular and cortical bone [20]. In
mice, voluntary wheel running was associated with
increased trabecular bone mineral density [21].
Despite the complex relationships between bone,

obesity and physical activity, it is clear that both obe-
sity and physical activity affect bone metabolism. The
purpose of this study was to determine how diet-
induced obesity combined with voluntary exercise
affects cortical and trabecular bone properties. We
measured these bone properties by high resolution
μCT together with pQCT measurements on the distal
femoral metaphysis.

Methods
Animals and Diets
This study was approved by the National Animal Experi-
ment Board, Finland. Forty 6-week-old male C57BL/6J
mice were obtained from Taconic (Ejby, Denmark). The
mice were housed, one per cage, in a humidity- and
temperature-controlled room with a 12:12 light cycle
(08.00:20.00), and allowed to adapt to their new environ-
ment for 1 week before being allocated to one of the four
intervention groups: control diet (C), control diet +
voluntary running (CR), high-fat diet (HF), and high-fat
diet + voluntary running (HFR).
To study the effect of voluntary wheel running exer-

cise, animals in the CR and HFR groups were housed in
custom-made cages with a running wheel (diameter 24
cm, width 8 cm) to which they had free access 24 h/day
for 21 weeks. Total wheel revolutions were recorded
daily by a magnetic switch, with the total exercise per-
formed per day determined by multiplying the number
of wheel rotations by the circumference of the wheel. C
and HF animals were housed in similar cages without
the running wheel. The mice had continuous access to
the control or high-fat diet, respectively, and to regular
tap water. Body mass and food consumption were mea-
sured at two-week intervals. The control diet was a
standard rodent diet, R36 (4% fat, 55.7% carbohydrate,
18.5% protein, 3 kcal/g, Labfor, Stockholm Sweden).
The high-fat diet was a lard-based purified diet, D12492
(60% fat, 20% carbohydrate, 20% protein, 5.24 kcal/g,
Research Diets, Inc., USA).

Glucose Tolerance and Insulin Resistance Tests
For all the mice glucose and insulin tolerance tests
(GTT and ITT, respectively) were performed at one-
week interval after 10 and 18 weeks of intervention.
Briefly, mice were fasted for 5 h before GTT and 2 h
before ITT. Glucose (2 g/kg body mass) or insulin
(0.75 U/kg BM; Humuline® Regular, Eli Lilly, Indianapo-
lis, IN) solution was injected into the intraperitoneal cav-
ity, followed by blood sampling from the shaved hind
limb vein at time points 0, 15 (ITT only), 30, 60, 90, and
120 min. Glucose level was determined by a B-Glucose
photometer (HemoCue AB, Angelholm, Sweden). Total
area under the GTT (AUC-GTT) and above ITT (AUC-
ITT) curves was calculated using the trapezoidal rule.

Serum Biomarkers
After 21 weeks of intervention, the mice were sacrificed
by cervical dislocation. Blood samples were collected
and sera separated after clotting for 1 hour and stored
at -70°C for further analysis. Concentrations of insulin,
leptin, osteoprotegerin (OPG), osteocalcin, resistin, and
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plasminogen activator inhibitor-1 (PAI-1) in serum were
measured using the Milliplex mouse bone metabolism
panel (Millipore, Bedford, MA) according to the manu-
facturer’s instructions.

Specimen Collection
After the mice were sacrificed, the left femur was sepa-
rated and trimmed of attached soft and connective tis-
sues, wrapped within PBS-soaked gauze, and stored
frozen at -20°C. Liver and epididymal fat pads were sur-
gically removed.

pQCT Densitometry
The femur was thawed overnight at 4°C and inserted
into a specially constructed plastic syringe with the shaft
in the axial direction. Scanning was done with a pQCT
apparatus (Stratec XCT Research SA, Stratec Medizin-
technik GmbH, Pforzheim, Germany) calibrated using a
hydroxyapatite standard cone phantom. A voxel size of
0.07 × 0.07 × 0.5 mm was used in all the measurements.
The scout view was obtained from the entire bone for

landmark detection (see Figure 1). Four slices (s1-s4)
were scanned at 0.5-mm intervals starting from 12.5%
landmark. All the scanned slices were analyzed by bone
analysis software (Geanie 2.1, Commit, Espoo, Finland).
A threshold value of 500 mg/cm3 was used for the
separation of trabecular and cortical bone. From s4,
total bone circumference (CfB), total bone cross-
sectional area (CSA), total bone mineral density (BMD)
and content (BMC), density-weighted maximum (Imax),
minimum (Imin), and polar moment of inertia (Ipolar)
were determined. Cortical cross-sectional area (cCSA),
cortical bone mineral density (cBMD) and content
(cBMC), cortical thickness (ThC: using a ring model),
trabecular cross-sectional area (traCSA), trabecular bone
mineral density (traBMD) and content (traBMC), and
marrow cross-sectional area (mCSA) were also assessed.
Compressive strength index (CSI = BMD2 × CSA) was
determined. After the pQCT measurements, the distal
half of the femur was stored at -4°C and fixed with 70%
ethanol for further analysis. All pQCT measurements
and data analyses were performed by the same

Figure 1 pQCT (left) and μCT (right) overviews of a mouse femur. The position of slices (s1 - s4) scanned by the pQCT are shown. The
same volume of interest was analyzed also by μCT.
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individual. The coefficients of variation (CV) for
repeated measurements were 2.0%, 0.5%, 2.8%, and 1.2%
for cTh, cBMD, traBMD, and CSA, respectively.

μCT Measurements
μCT is an imaging method that produces (in the absorp-
tion mode) a 3D density map of the sample at very high
spatial resolution. The left distal femur was scanned with
a Skyscan 1172 desktop μCT scanner (Skyscan, N.V.,
Aartselaar, Belgium). The X-ray source was set to 90 kV
and 112 μA, with a voxel size of 2.8 μm. The projection
images were acquired over an angular range of 360° with
an angular step of 0.4° and reconstructed using a cone-
beam reconstruction software based on the Feldkamp
algorithm yielding 1600 cross-sectional images. Four
regions (s1, s2, s3, and s4) (Figure 1) were selected. Each
region contained 174 cross-sectional images correspond-
ing to the thickness measured by pQCT. For the cortical
shell and trabecular structure analysis, we excluded s1,
s2 and s3 due to their complicated structure (connected
with fabella and condyle).
Reconstructed bone images were filtered with an

Accurate Gaussian Blur filter (sigma = 0.8) to reduce
noise. The real spatial resolution of the image is 2-3
times the pixel size and therefore filtering with a small
kernel linear filter does not significantly affect the edge
quality. The binarized images were segmented from
background using a simple global thresholding method.
A fully automated segmentation method was developed
for trabecular and cortical shell separation on the basis
of previous reports [22-25]. The proposed algorithm was
simply based on dilation, connection, erodation, and
subtraction, and all procedures were performed using
open source software ImgeJ (NIH, http://rsbweb.nih.
gov/ij/). The acquired binarized image stack of trabecu-
lar bone was analyzed using a CT-Analyser (version
1.6.1). Connectivity density (Conn.D), trabecular bone
volume (BV) and surface (BS), bone surface and volume
ratio (BS/BV), trabecular number (Tb.N), and trabecular
separation (Tb.Sp) were calculated using the Mean
Intercept Length (MIL). Trabecular thickness (Tb.Th)
was determined using the method of Hildebrand [26]. In
addition to the computation of metric parameters, topo-
logical parameters were determined so as to describe
the 3D nature of the trabecular bone. A trabecular pat-
tern factor (Tb.Pf)), representing the amount of concave
(plate-like bone) and convex (rod-like bone) structures
was calculated. The higher the Tb.Pf, the more rod-like
is the trabecular bone shape. A structure model index
(SMI) was measured to determine the prevalence of
plate-like or rod-like trabecular structures, where 0
represents “an ideal plate”, 3 “a rod or cylinder”, and 4
“a sphere”. The degree of anisotropy (DA) of a structure,
defined as the ratio between the maximal and minimal

radii of the MIL ellipsoid, was calculated by superimpos-
ing parallel test lines in different directions in the 3D
image. DA defines the magnitude of preferred orienta-
tion of trabeculae, i.e., the amount of bone that is
aligned with the principal axis relative to the other axes.
As with pQCT, all microCT measurements and data
analyses were performed by the same individual with
the CV values being 1.4% for BV, 3.2% for Tb.N, 4.2%
for Tb.Th, and 1.2% for Tb.Sp.

Statistics
Results are expressed as mean (SD). The Shapiro-Wilk
test was used to investigate within-group normality for a
given parameter of interest. Levene’s test was conducted
to assess the homogeneity of the variance assumption.
The effects of diet (with 2 levels: control and high-fat
diet), running (with 2 levels: with and without voluntary
wheel running), and their interaction were investigated
for each dependent variable using a two-way ANOVA.
With the present sample size, the mean statistical power
for detecting significant (p < 0.05) diet effect on mea-
sured bone traits was 0.88, with four parameters show-
ing power values less than .70 (tBMD = 0.67, CSI =
0.65, Conn.D = 0.60). For significant running effect, the
mean power was 0.86, with one parameter showing a
value below .70 (tBMD = 0.64). A significant interaction
of running by diet was found for CSI with a power of
0.70. The trait means of groups were compared and the
significance of differences was determined by post hoc
testing using Tukey’s HSD. When the normality or
equality of variance assumptions was not met, logarithm
transformations were conducted. If these parameters
still did not meet normality and equality of variance,
nonparametric tests were performed and Kruskal
Wallis Test was used for multiple comparisons with
Chi-Square. The Asymp.Sig level was set at p < 0.05. In
the Wilcoxon W test for between-group comparisons,
the adjusted Asymp.Sig level was set at p < 0.008. All
the statistical analyses were performed with SPSS 15.0.
A p-value of < 0.05 was considered significant.

Results
Caloric Intake, Body Mass, GTT and ITT
Voluntary wheel running increased the total dietary
caloric consumption as well as protein and carbohydrate
intake. However, the increase was significant only in the
mice on the control diet (Table 1). After 4 weeks of
intervention, HF and HFR had significantly higher body
mass than C and CR. From this time point on, the body
mass of mice fed the high-fat diet increased continu-
ously. The body mass of mice fed the control diet
reached a peak after 12 weeks of intervention. Finally,
the mice in the HF group gained ~72% of body mass
and those in C ~ 25% when compared to their initial
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weight, while the runners gained slightly less body mass,
HFR ~64% and CR ~23% (Figure 2A) [21]. Figure 2B
shows that the obese mice had significantly lower liver
mass relative to body mass than the mice fed with the
control diet. Under the control diet, running signifi-
cantly increased relative liver mass. Consistent with
their increased body mass, the obese mice had higher
relative epididymal fat pad mass than their normal-
weight counterparts (Figure 2C).
As expected, the obese mice in HF and HFR had sig-

nificantly impaired glucose tolerance and insulin sensi-
tivity compared to the mice in C and CR. Voluntary
wheel running significantly decreased AUC-GTT in the
mice on the control diet, but no significant running-
induced changes were found in AUC-ITT. These find-
ings were consistent with fasting plasma glucose levels,
which were lower in CR than in C (Table 1).

Wheel-Running Distance
Both CR and HFR reached their maximum running dis-
tance after 4 weeks of intervention, with a gradual
decline thereafter. The average daily distances in CR
and HFR were 3.48 (1.34) and 3.13 (1.13) km, respec-
tively, with no significant differences between the
groups. We have not found any significant differences in
the cumulative running distance between CR and HFR,
but voluntary exercise training improved the running
capacity, especially in the HFR group [21].

Serum Biomarkers
Diet showed a significant main effect on serum insulin
(Figure 2D), leptin (Figure 2E), osteoprotegerin
(Figure 2F), PAI-1 (Figure 2H), and resistin (Figure 2I),
but not on osteocalcin (Figure 2G). The obese mice had

significantly higher levels of these biomarkers compared
to the mice fed with the control diet.

Effects of Diet-Induced Obesity and Voluntary Running on
Bone
1) Obese mice had larger and stronger distal metaphysis
with more abundant and thicker trabecular bone.
Bone traits measured by pQCT are shown in Table 2.

The obese mice had larger bone size (CfB and CSA),
higher BMC and higher Imax, Imin, and Ipolar, but
lower BMD. Larger traCSA and higher traBMC were
also found in the obese mice.
Table 3 shows the 3D trabecular variables measured

by μCT at the same site as pQCT. The obese mice had
higher BV and BS, a lower BS/BV ratio, higher Tb.Th
and Tb.N, smaller Tb.Sp, and higher Conn.D. Consis-
tently with the numerical data, representative 3D images
of the μCT scans from the distal metaphysic of HF and
HFR animals (Figure 3, lower panel) show that the
obese mice have a more abundant, thicker, and well-
connected trabecular structure compared to their
normal-weight counterparts.
2) Voluntary wheel running decreased all the cortical

parameters, but increased trabecular mineral density
and improved trabecular microstructure.
The runners had smaller cCSA, lower cBMD and

cBMC, thinner cTh, but higher traBMD than their
counterparts, especially on the control diet (Table 2).
The μCT measurements (Table 3) showed that the

runners had smaller Tb.Pf and SMI, indicating a more
plate-like structure (Figure 3, right panel). This was
more evident in mice fed with the high-fat diet.
A significant interaction between voluntary wheel run-

ning and diet on the compressive strength index was

Table 1 Total energy consumption and the energy derived from fat, protein and carbohydrates during the 21-week
intervention, and the results of the glucose and insulin tolerance tests performed at weeks 10 and 18 of the
intervention

Basic data Control diet High-fat diet ANOVA (p value)

C (n = 10) CR (n = 10) HF (n = 10) HFR (n = 10) Diet Running Diet*Running

Energy consumption

Total (kcal) 1402 (83) 1513 (76)a 1731 (143)ab 1771 (132)ab <0.001 <0.05 0.330

Fat (kcal)# 56.1 (3.3) 60.5 (3.1)a 1038 (86)ab 1063 (79)ab

Protein (kcal)# 259 (15) 280 (14)a 346 (29)ab 354 (26)ab

Carbohydrate (kcal)# 781 (46) 843 (43)a 346 (29)ab 354 (26)ab

GTT and ITT

AUC_GTT_10w† 1087 (315) 807 (194)a 1448 (432)ab 1561 (559)ab <0.01 0.510 0.128

AUC_GTT_18w 947 (356) 722 (315)a 1527 (216)ab 1575 (466)ab <0.01 0.428 0.225

AUC_ITT_10w 778 (105) 727 (155) 980 (159)ab 862 (242)b <0.01 0.131 0.540

AUC_ITT_18w 812 (183) 767 (169) 992 (190)ab 968 (245)b <0.01 0.586 0.869

Glucose10w-fasting (mmol/L) 9.08 (0.68) 8.29 (0.97)a 9.74 (0.58)b 9.26 (0.92)b <0.01 <0.05 0.547

Glucose18w-fasting (mmol/L) 9.26 (1.15) 8.38 (0.92)a 10.3 (1.1)ab 10.3 (0.9)ab <0.01 0.168 0.197

#Wilcoxon W test for between group comparisons, †Logarithm transformation for ANOVA. ap < 0.05 vs C; bp < 0.05 vs CR
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found. Under control diet, voluntary wheel running
decreased CSI (Table 2).

Discussion
It is well known that trabecular bone strength is deter-
mined not only by the amount of composite material
(mineral, protein and water) but also the distribution of
these materials (size, area, structural properties).
A number of advantages, such as more abundant,
thicker, well-connected, and plate-like trabeculae, confer

a stronger trabecular bone compartment [27-30]. In the
present study we demonstrated that diet-induced obese
mice had a larger and stronger femoral metaphysis with
more abundant and thicker trabecular bone. Voluntary
wheel running decreased all of the measured cortical
parameters, but increased trabecular bone mineral den-
sity and improved the 3D micro-structure.
Numerous data have shown that obesity is closely

associated with dietary fat intake and sedentary life style
[31,32]. A close link between body mass and bone mass
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Figure 2 Body composition and serum biomarkers in mice. Body mass gain (A), liver mass relative to body mass (B) and epididymal fat pad
mass relative to body mass (C) after the 21-week intervention. Insulin (D), leptin (E), osteoprotegerin (F), osteocalcin (G), plasminogen activator
inhibitor-1 (PAI-1) (H) and resistin (I) concentrations in the serum samples collected at the end of the 21-week intervention. Means are shown
inside the columns. p < 0.05 was regarded as significant (n = 10 mice/group).
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[17,33] and increased risk for osteoporotic fracture due
to low body and thus bone mass [34] has been reported.
Our study also found a positive relationship between
body mass and bone mass. Increased body mass requires
stronger bone; this can be effectively realized through
distributing bone mass further from the center of mass
rather than dramatically increasing bone density. In our
study, although total bone mineral density was
decreased to some extent, the enlarged marrow cavity

and increased total bone cross-sectional area resulted in
a larger and stronger bone as indicated by the increased
density-weighted moment of inertia (bending strength).
This suggests that endosteal resorption and periosteal
formation were enhanced in the obese mice. However,
the effects of body mass on the skeleton remain contro-
versial although well documented in obese subjects in
previous studies [35,36]. Some studies have shown that
obese subjects have weaker bone to bear their over-

Table 2 Cortical and trabecular parameters measured by pQCT from the distal metaphysis of mouse femur dissected
after 21-week intervention

pQCT Control diet High-fat diet ANOVA (p value)

C (n = 10) CR (n = 10) HF (n = 9) HFR (n = 9) Diet Running Diet*Running

CfB (mm) 6.80 (0.15) 6.61 (0.28) 7.19 (0.25)ab 7.18 (0.35)a <0.01 0.252 0.291

CSA (mm2) 2.85 (0.14) 2.68 (0.18) 3.11 (0.31)b 3.16 (0.35)b <0.01 0.491 0.190

BMD (mg/cm3) 505 (13) 492 (13) 489 (14) 478 (20)a <0.01 <0.05 0.806

BMC (mg/mm) 1.44 (0.07) 1.32 (0.09)a 1.52 (0.11)b 1.51 (0.15)b <0.01 0.077 0.114

Biomechanics

Imax (mg·cm) 867 (71) 763 (113) 1025 (124)ab 1001 (171)b <0.01 0.129 0.336

Imin (mg·cm) 255 (26) 219 (25) 298 (45)b 295 (65)b <0.01 0.179 0.268

Ipolar (mg·cm) 1125 (95) 982 (134) 1323 (164)ab 1294 (233)b <0.01 0.120 0.300

CSI × 103(g2/cm4) 6.77 (0.46) 5.87 (0.55)a 6.79 (0.53) 6.81 (0.73) <0.05 <0.05 <0.05

Cortex

cCSA (mm2) 1.23 (0.11) 1.06 (0.09)a 1.21 (0.09)b 1.17 (0.11) 0.142 <0.01 0.062

cBMD (mg/cm3) 779 (11) 757 (23) 770 (19) 752 (31)a 0.332 <0.01 0.820

cBMC (mg/mm) 0.95 (0.09) 0.80 (0.08)a 0.93 (0.07)b 0.88 (0.12) 0.334 <0.01 0.096

cTh (μm) 139 (23) 110 (14)a 129 (12)b 120 (18)a 0.866 <0.01 0.103

Trabeculae

traCSA (mm2) 1.63 (0.11) 1.62 (0.12) 1.90 (0.26)ab 1.99 (0.32)ab <0.01 0.596 0.522

traBMD (mg/cm3) 298 (11) 317 (10)a 308 (12) 314 (12)a 0.431 <0.01 0.113

traBMC (mg/mm) 0.49 (0.04) 0.51 (0.04) 0.58 (0.08)a 0.63 (0.10)ab <0.01 0.121 0.888

mCSA (mm2) 0.28 (0.06) 0.29 (0.05) 0.36 (0.10) 0.28 (0.10) 0.261 0.235 0.147

Results are mean (SD) and p < 0.05 was considered as significant. (C = control diet, CR = control diet + voluntary running, HF = 60% fat diet, HFR = 60% fat diet +
voluntary running).
ap < 0.05 vs C; bp < 0.05 vs CR.

Table 3 Trabecular parameters measured by μCT from the distal metaphysis of mouse femur dissected after 21-week
intervention.

μCT Control diet High-fat diet ANOVA (p value)

C (n = 8) CR (n = 9) HF (n = 7) HFR (n = 7) Diet Running Diet*Running

Conn.D (mm-3) 337 (129) 367 (105) 466 (138) 415 (88) <0.05 0.810 0.339

BV (10-1 mm3) 0.093 (0.015) 0.103 (0.035) 0.112 (0.027) 0.146 (0.034)ab <0.01 0.069 0.333

BS (mm2) 1.59 (0.24) 1.70 (0.52) 1.85 (0.39) 2.23 (0.37)ab <0.05 0.106 0.363

BS/BV (mm-1) 171 (6) 167 (10) 160 (10) 154 (11)ab <0.05 0.143 0.741

Tb.Pf (mm-1) 72.8 (3.4) 69.2 (6.1) 72.1 (7.0) 63.9 (6.2)ac 0.165 <0.01 0.260

SMI 2.60 (0.07) 2.54 (0.11) 2.74 (0.12)b 2.53 (0.11)c 0.089 <0.01 0.061

Tb.Th (μm) 23.7 (1.2) 23.7 (1.2) 26.1 (0.9)ab 25.3 (1.7)ab <0.01 0.446 0.388

Tb.N (mm-1) 0.288 (0.020) 0.330 (0.112) 0.339 (0.078) 0.429 (0.090)ab 0.068 0.158 0.290

Tb.Sp (μm) 429 (4) 428 (9) 418 (10) 414 (13)ab <0.01 0.352 0.627

DA 3.52 (1.49) 3.72 (1.15) 4.08 (1.52) 3.73 (1.36) 0.575 0.883 0.587

Values are mean (SD) and p < 0.05 was considered as significant. (C = control diet, CR = control diet + voluntary running, HF = 60% fat diet, HFR = 60% fat diet +
voluntary running).
ap < 0.05 vs C; bp < 0.05 vs CR; cp < 0.05 vs HF
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weight body mass compared to normal counterparts in
both humans and animals [37,38]. In our study, after
adjusting for body mass (unpublished data), no signifi-
cant differences in bone traits between the obese and
normal weight mice were found. This suggests increased
bone strength through enlarged cross-sectional area
thus distributing bone mass further from the centre of
mass to adapt to the increase in body mass.
In order to further elucidate the effect of obesity and

physical activity on bone, we separately estimated the
trabecular and cortical bone compartments. It is well
known that trabecular bone is the primary target for
anabolic or catabolic factors and the most active bone
site. The obese mice had larger trabecular area and
higher trabecular bone mass than the control mice. In a
recent report [39], the authors found increased SMI,
decreased Conn.D, and similar Tb.Th in the proximal
tibia in diet-induced obese mice. Similarly, we found
increased SMI, but increased Conn.D and thicker trabe-
culae in the distal femur. These discrepancies could be
explained by the differences in skeleton sites and our
more accurate method of segmentation and higher reso-
lution (2.8 μm), which could preserve natural structure
and detect even tiny connections. The cortical para-
meters studied (cCSA, cBMD, cBMC, and cTh,) were
not significantly influenced by diet-induced obesity, as
also found in a previous study [39]. However, some stu-
dies have shown positive effects of diet-induced obesity
on cortical bone size [40], while negative effects on cor-
tical bone mass [41] and size-independent mechanical
properties [40] have also been suggested. These contro-
versial results may be due to differences in animal age

and the skeleton site measured as well as different mea-
suring techniques.
Bone is a dynamic structure monitored by both intrin-

sic (body mass, hormone, cytokine, and other intrinsic
factors) and extrinsic factors (environmental factors
including physical activity, life style, etc.). On the one
hand, the effect of diet-induced obesity on bone could
be explained by alteration in the intrinsic mechanical
loading environment caused by the increase in body
mass. On the other hand, adipose tissue is regarded not
just as a passive tissue for the storage of excess energy
in the form of triglycerides, but also as an active endo-
crine organ secreting a variety of biologically active
molecules, for example, leptin [42], resistin [43] and adi-
ponectin [44]. A cascade of events such as intense con-
version of androgens into estrogens occurring in adipose
tissue, alterations in other hormones or cytokines, and
hyperinsulinemia may influence the bone microenviron-
ment and increase bone mass [17]. The elevated plasma
leptin level in diet-induced obesity is a predictor of body
mass accrual in different species [12,45,46]. The serum
leptin level also regulates bone mass [47]. However, the
results of published studies on the effects of leptin level
on bone are complex and controversial [42]. Resistin is
a controversial inflammatory-related factor [48], which
also influences both osteoclast and osteoblast activity,
resulting in increased bone remodelling [43]. We found
higher plasma leptin and resistin levels in obese mice,
suggesting that plasma leptin and resistin levels have a
positive effect on bone. However, their effects on bone
mass and strength were the opposite, bone mass and
strength showing a positive association with plasma lep-
tin level and a negative association with resistin level
(unpublished data). However, increased bone mass with
increased body mass independent of leptin was also
reported in a recent study [33]. So far, the mechanism
of interaction between bone metabolism and resistin
remains unclear.
The development of obesity is associated with chronic

inflammatory status, coinciding with significantly
increased macrophage infiltration in adipose tissue and
the expression of inflammatory cytokines, such as TNF-
a, IL-6, monocyte chemotactic protein-1, and plasmino-
gen activator inhibitor type-1 (PAI-1) [6]. All of these
inflammatory reactions are considered to be responsible
for the majority of the obesity-related syndromes. Not
surprisingly, this inflammatory status also influences
bone metabolism through altering the micro-environ-
ment surrounding the bone cells. Over expression of
PAI-1 increased bone strength and mineralization in an
age- and gender-specific manner [49]. Here, we found
that a higher level of PAI-1 in obese mice correlated sig-
nificantly with trabecular thickness, suggesting that PAI-
1 had a positive effect on bone. In addition to these

Figure 3 Representative 3D structure of the distal metaphysis
of mouse femur. A rod-like trabecular structure in animals under
control diet with the access to wheel running, but a more plate-like
structure in HFR animals was found.
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altered adipokins and inflammatory factors, we also
detected higher levels of osteoprotegerin that is a bone
resorption inhibitor [50]. Together with the aforemen-
tioned factors, higher body weight may increase bone
strength by shifting bone remodelling towards more
active bone formation.
In order to investigate possible intervention methods,

we also examined the effects of voluntary exercise. Here
we found that voluntary wheel running was associated
with a non-significant reduction in body mass with a
concomitant improvement in glucose tolerance and
insulin sensitivity and an increase in relative liver mass.
Further studies are needed to find out whether the rela-
tive increase in liver mass in runners is associated with
factors such as increased protein synthesis or glycogen
storage. The minor reduction in body mass was not due
to reduction in dietary intake. In fact, the runners
consumed slightly more energy than their sedentary
counterparts. Thus, the reduction in body mass was sec-
ondary to the increase in exercise-associated energy
expenditure.
Physical activity has been shown to associate with

bone mass and strength and to have positive effects on
bone properties [51,52]. In obese subjects, physical activ-
ity increased total, hip, and lumbar bone mineral con-
tent [53] and decreased plasma leptin level [54,55].
More excitingly, long-term leisure time physical activity
also showed positive effects on both cortical thickness
and trabecular bone after controlling for the subjects’
genetic background [20]. The present study showed that
voluntary exercise increased trabecular bone mineral
density and improved the bone geometrical structure
but led to a decrease in all of the cortical parameters.
Previous animal studies have also shown positive effects
of exercise on bone in different species at different ages
with different types of exercises [56-59]. Most of these
studies have focused on either cortical or trabecular
bone mass or strength, with very few studies reporting
micro-structural alteration induced by exercise. In
C57BL/6J mice, from the age of six weeks onwards, tra-
becular volume and trabecular number are generally
decreased [60] while trabecular thickness and trabecular
space are increased up to an age of 24 weeks [61]. Mori
et al. [62] showed that intermittent voluntary climbing
in eight-week-old C57BL/6J mice increased trabecular
bone volume and reduced bone resorption, partially due
to initial down-regulation of marrow osteoclastogenic
cells and up-regulation of osteogenic cells, while further
exercise desensitized them. In our study, the voluntary
running lasted for 21 weeks, thus covering the entire
growth period. We found that voluntary exercise tended
to increase trabecular bone volume and decreased trabe-
cular pattern factor and structure model index, shifting
trabecular bone towards a stronger, more plate-like

structure. However, in agreement with our previous
report [21], we found that voluntary exercised animals
under control diet had lower total BMC and cortical
parameters. Similar findings were also reported in the
rat tibia after intensive treadmill running [63], in the
mice tibia after weight-bearing running during growth
[64], and in 23-week-old female C57BL/6J mice after
one month of voluntary wheel running [65]. These
effects might be explained by overactive modeling or
remodeling of bone under continuous mechanical sti-
mulation during growth [66-68]. However, histo-
morphometric analyses [63] have suggested that
decreased osteoblastic activity rather than a global adap-
tation of bone remodeling resulted in reduced longitudi-
nal bone growth and bone loss in young rats under
strenuous training. Another possible reason may be exer-
cise-induced weight loss, which is accompanied by a
reduced mechanical strain on the skeleton and decreased
need of strong bones. Consequently, although numerous
data indicate that, during growth, physical activity
imposes its effect on bone more efficiently, the exercise
programs or activities that will optimize bone structure
and strength still remain unclear [18].

Conclusions
Diet-induced obesity had positive effects on total bone
mass and strength rather than on total BMD, and also
positive effects on trabecular structure, whereas no
effects on cortical parameters were noted. Voluntary
training had protective effects on trabecular bone
mineral density and 3D microstructure while limiting
the overall growth of cortical bone. Voluntary training
combined with dietary intervention showed more appar-
ent effects on trabecular microstructure. These results
suggest that both diet and voluntary exercise affect bone
properties in a site-specific manner and that the interac-
tion between physical activity and diet is highly
complicated.
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