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Abstract

Milk is rich in miRNAs that appear to play important roles in the postnatal development of all mammals. Currently,
two competing hypotheses exist: the functional hypothesis, which proposes that milk miRNAs are transferred to the
offspring and exert physiological regulatory functions, and the nutritional hypothesis, which suggests that these
molecules do not reach the systemic circulation of the milk recipient, but merely provide nutrition without
conferring active regulatory signals to the offspring. The functional hypothesis is based on indirect evidence and
requires further investigation. The nutritional hypothesis is primarily based on three mouse models, which are
inherently problematic: 1) miRNA-375 KO mice, 2) miRNA-200c/141 KO mice, and 3) transgenic mice presenting
high levels of miRNA-30b in milk. This article presents circumstantial evidence that these mouse models may all be
inappropriate to study the physiological traffic of milk miRNAs to the newborn mammal, and calls for new studies
using more relevant mouse models or human milk to address the fate and role of milk miRNAs in the offspring and
the adult consumer of cow’s milk.
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Introduction
Milk contains a plethora of miRNAs, molecules that are
known to play pivotal roles in the post-transcriptional
regulation of gene expression in various organisms [1, 2].
Milk miRNAs are known to remain stable under adverse
conditions, including RNase digestion, low pH, high
temperature, and freeze/thaw cycles in the case of frozen
milk [3–6]. Milk miRNAs are not only present in free
form within the liquid part of milk (skim milk), but they
are also packaged inside carrier vehicles, which include
milk exosomes, milk cells as well as other microvesicles
such as the milk fat globules [6]. This packaging of milk
miRNAs has been suggested to further mediate their pro-
tection after milk ingestion, potentially facilitating their
absorption in the suckling young [6]. Indeed, it has been
recently demonstrated that populations of milk cells sur-
vive in the gastrointestinal tract of suckling mouse pups
and enter the systemic circulation through which they are

transferred to and integrate in various organs [7, 8]. This,
in addition to the previously described exosomal transfer
of milk miRNAs [9], may provide an alternative route of
protection, absorption and function of milk miRNAs in
the young. Further, milk exosomal miRNA profiles change
in response to mammary gland infection [2]. Similarly,
milk cellular miRNA profiles have been shown to change
in response to feeding. Together, the various levels of pro-
tection of miRNA within milk, their dynamic nature, and
the fact that most milk miRNAs originate from the lactat-
ing mammary epithelium [10, 11] provide indirect evi-
dence supporting specific function(s) of these molecules
during lactation, for both the mammary gland and the re-
cipient young [6]. However, animal studies conducted so
far have reported controversial findings, some being in
support and others against the hypothesis of the func-
tional significance of milk-derived miRNAs in the off-
spring. Here, the unsuitability of the mouse models
previously used to examine the migration and potential
function of milk miRNA in the offspring is discussed, less-
ening the current controversy and supporting the transfer
via multiple routes and potential function of milk miRNAs
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in the young. Further studies are urgently required using
suitable animal models as well as in humans to fully ad-
dress the transfer and functional significance of milk-
derived miRNAs in the offspring and the adult human
consumer of cow’s milk.
Currently, two hypotheses exist: the functional hy-

pothesis, which accepts the transfer and function of
milk miRNAs in the offspring, and the nutritional hy-
pothesis, which suggests that these molecules do not
reach the systemic circulation of the milk recipient,
but merely provide nutrition without conferring active

regulatory signals to the offspring (Fig. 1). The func-
tional hypothesis is based on indirect evidence out-
lined above and requires further investigation. The
nutritional hypothesis is based on three problematic
mouse models: 1) miRNA-375 KO mice, 2) miRNA-
200c/141 KO mice, and 3) transgenic mice presenting
high levels of miRNA-30b in milk. We will present
circumstantial evidence that these three models may
all be inappropriate to study the physiological traffic
of milk miRNAs from the mammary gland to mam-
malian offspring.

A

B

Fig. 1 Illustration of the nutritional hypothesis (a) and the functional hypothesis (b) for the fate of milk-derived miRNAs. The nutritional hypothesis
claims that milk miRNAs are degraded in the intestinal lumen and only provide nucleotides that serve local nutritional requirements for intestinal
growth or the growth of other organs via the bloodstream. According to the functional hypothesis, milk-derived miRNAs are absorbed into the
bloodstream via endocytosis of exosomes, other milk microvesicles or the direct transfer of milk cells, and exert distant gene regulatory functions.
MC: Milk cell; MEC: mammary epithelial cell; MFG: Milk fat globule
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Transgenic mice overexpressing miRNA-30b
miRNA-30b is a critical miRNA involved in the control of
lactation [12]. Transgenic mice overexpressing miRNA-
30b show a reduction in the size of alveolar lumen, a
defect of the lipid droplets and a growth defect of pups
fed by transgenic females [12]. The defect in mammary
epithelial cell biology caused by overexpression of
miRNA-30b may impair cellular traffic and correct assem-
bly of milk exosomes. Laubier et al [13] used this model
to examine milk exosomal miRNA traffic in the offspring
and found no effect of the elevated miRNA-30b level in
the mouse milk on its level in pup tissues. The authors re-
ported that the concentration of miRNA-30b in the milk
of transgenic mice was 134 times the concentration in the
wild-type control. However, they did not assess whether
the extra miRNA-30b in the milk of this model was en-
capsulated in extracellular vesicles such as exosomes.
miRNA encapsulation plays an essential role for mRNA
transport and stability [14–17]. The fact that miRNA-30b
concentration in the stomach of transgenic pups was only
31 times the concentration in the wild-type pups, i.e. sub-
stantially lower than the ratio in milk, is consistent with
an extravesicular localization resulting in impaired stabil-
ity and bioavailability of miRNA-30b from these trans-
genic mice. This confounder was disregarded by Laubier
et al [13] and is an important shortcoming of this study. It
is therefore inappropriate to use a pathological lactation
model for the study of physiological milk exosome path-
ways. Notably, the pups of these mice have severe growth
defects. It is not unlikely that exosomal components im-
portant for endocytotic exosome uptake are missing in
this model. Thus, transgenic miRNA-30b overexpressing
mice with lactation defects and disturbances of mammary
epithelial cell differentiation are not suitable for studying
milk exosome traffic under physiological conditions. An
aberrant composition of miRNA-30b-containing milk exo-
somes may explain the observed failure of miRNA-30b in-
testinal uptake [13]. Furthermore, it has been recently
demonstrated that increased levels of miRNA-30b inhibit
phagocytosis in myeloid inflammatory cells [18]. Taken to-
gether, this model appears to be inappropriate for the
study of the complex pathway of maternal-neonatal milk
exosome trafficking.

miRNA-375 and miRNA-200c/141 KO mice
Title et al [19] studied two genetic models of miRNA-
375 and miRNA-200c/141 knockout (KO) mice, which
received milk from wild-type foster mothers. No convin-
cing evidence was presented of intestinal milk miRNA
uptake, but rather rapid intestinal miRNA degradation,
leading the authors to conclude that milk miRNAs do
not play a gene regulatory role in newborn mammals
but may only serve as a nutritional source. Yet, a small
increase in the plasma levels of both of these miRNAs

was detected in KO pups after nursing, therefore the au-
thors did not exclude the possibility that some miRNA
copies may be transferred to the bloodstream, although
they did not consider this small transfer to have a bio-
logical effect. However, miRNAs have been shown to
function even at very low concentrations, of the femto-
molar to picomolar range [20–22]. Notably, as has been
previously discussed [6], neither of the examined miR-
NAs (miR-375 and miR-200c) in the study of Title et al
[19] was highly expressed in the wild-type mother’s milk
of this murine model, whilst both of these miRNAs are
known to be involved in the control of endocytosis and/
or exocytosis and to modulate epithelial function, which
may influence exosome endocytosis and hence their up-
take. For instance, modulation of miRNA-375 expression
alters voltage-gated Na(+) channel (VGNC) properties
and exocytosis in insulin-secreting cells [23]. VGNCs
modify the endocytotic membrane activity of human
breast and prostate cancer cells [24]. KRas, a target of
miRNA-200c, is involved in the control of endocytosis
and/or exocytosis [25, 26]. Further, most recent studies
have shown that miRNA-375 misses a miRNA sequence
motif {(A/U)(C2-4)(A/U)} that is essential for miRNA
packaging into exosomes [27]. Thus, the miRNA-375
and miRNA-200c KO mice appear to also be inappropri-
ate models to study milk exosome uptake, which may be
critically dependent on physiological miRNA-375 and
miRNA-200c signaling involved in endocytotic exosome
pathway regulation.
Cells appear to take up microvesicles by a variety of

endocytic pathways, including clathrin-dependent
endocytosis, and clathrin-independent pathways such
as caveolin-mediated uptake, macropinocytosis, phago-
cytosis, and lipid raft-mediated internalization [28].
Munagala et al. [29] demonstrated transport and
bioavailability of fluorophore-labeled bovine milk exosomes
in mice. Izumi et al. [30] showed that bovine milk exosomes
containing miRNA and RNA are taken up by human mac-
rophages. Wolf et al [9] provided evidence for an intestinal
transport of bovine milk exosomes by endocytosis. Kusuma
et al [31] reported recently that vascular endothelial cells
take up bovine milk exosomes via endocytosis [31]. More-
over, they showed that fluorophore-tagged bovine milk exo-
somes accumulate in non-intestinal tissues following oral
administration in mice [31]. In accordance, Arntz et al
[32] demonstrated active uptake of bovine milk exosomes
by murine intestinal cells. In 2014, Baier et al [33] re-
ported a dose-dependent increase of miRNA-29b and
miRNA-200c in blood serum after cow’s milk consump-
tion in healthy adult human subjects. Interestingly,
Aucherbach et al [34] in 2016 could not reproduce these
findings when analyzing the samples provided by the la-
boratory of Baier et al [33] and concluded that there is no
evidence for a transfer of bovine milk mRNAs into the
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circulation of adult humans. However, prolonged sample
storage over months and temperature changes during
sample transport (loss of dry ice reported by Auerbach
et al [34]) may have impaired exosome integrity and
thus miRNA recovery, especially in enzymatically highly
active peripheral blood mononuclear cells.
In the pig and wallaby, specific milk miRNAs mirrored

increased serum levels of lactation-derived miRNAs of
the suckling newborns, further supporting an intestinal
uptake of milk-derived miRNAs [11, 35]. The majority of
milk miRNAs are endogenously synthesized in mammary
epithelial cells and these molecules are abundant in human
milk, further supporting lactation-specific function(s) [10,
11, 36]. Remarkably, the 14 highly expressed miRNAs of
bovine milk fractions are related with target genes associ-
ated with organismal development such as hematological,
cardiovascular, skeletal, muscular, and immune system
development [37] favoring a systemic gene-regulatory
role of milk-derived miRNAs [36]. Milk of humans and
livestock animals is enriched with immune-related miR-
NAs [36, 38], which may not only shape the intestinal
immune system [39], but may also support the develop-
ment of thymus-controlled immune regulation [40],
both via microvesicle-associated miRNAs and miRNAs
contained within milk cells, which have recently been
shown to be actively transferred to the thymus of suck-
ling mouse pups (Alsaweed M et al 2016, personal
communication).

Conclusions
Collectively, at present no direct evidence exists that
convincingly demonstrates exosomal and other vehicle-
mediated uptake of milk miRNAs under physiological
conditions, whilst the animal models that have investi-
gated this thus far are considered unsuitable in many re-
spects. However, indirect evidence based on numerous
miRNA stability studies, in vitro exosomal trafficking
studies, and ex vivo human and animal milk miRNA ori-
gin and content studies strongly suggests a function in
the recipient offspring [6, 40–44]. In this regard, intes-
tinal permeability has to be considered which is in-
creased during the postnatal period and in inflammatory
bowel diseases [45, 46]. Increased intestinal permeability
may promote intestinal uptake of miRNA-enriched milk
exosomes as well as milk cells. It is critical that a physio-
logical feeding study is conducted with healthy newborn
as well as adult animals given radiolabelled milk exo-
somes that can distinguish between exogenous uptake
and endogenous synthesis of these molecules as well as
human milk studies to convincingly examine the fate
and function of these milk-derived molecules in the re-
cipient offspring and the adult human consumer of pas-
teurized cow’s milk.

Abbreviations
KO, knock out; MiRNA, micro ribonucleic acid; VGNA, voltage-gated Na(+)
channel

Acknowledgement
The authors thank Dr. Janos Zempleni for valuable discussions of miRNA
metabolism and trafficking.

Funding
There is no source of funding.

Authors’ contributions
BCM and FK wrote the manuscript and contributed equally. DTG, PEH, SMJ,
PCB, LC, and GS searched and critically reviewed the literature. All authors
read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Dermatology, Environmental Medicine and Health Theory,
University of Osnabrück, Osnabrück, Germany. 2School of Chemistry and
Biochemistry, Faculty of Science, The University of Western Australia, Crawley,
Australia. 3Center for Primary Health Care Research, Lund University, Lund,
Sweden. 4Department of Health and Exercise Science, Colorado State
University, Fort Collins, USA. 5Institute of Clinical Chemistry and Laboratory
Medicine, University Clinics of Regensburg, Regensburg, Germany.

Received: 12 May 2016 Accepted: 15 June 2016

References
1. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell.

2004;116:281–97.
2. Sun J, Aswath K, Schroeder SG, Lippolis JD, Reinhardt TA, Sonstegard TS.

MicroRNA expression profiles of bovine milk exosomes in response to
Staphylococcus aureus infection. BMC Genomics. 2015;16:806.

3. Zhou Q, Li M, Wang X, Li Q, Wang T, Zhu Q, et al. Immune-related microRNAs
are abundant in breast milk exosomes. Int J Biol Sci. 2012;8:118–23.

4. Kosaka N, Iguchi H, Ochiya T. Circulating microRNA in body fluid: a new
potential biomarker for cancer diagnosis and prognosis. Cancer Sci. 2010;
101:2087–92.

5. Ji L, Chen X. Regulation of small RNA stability: methylation and beyond. Cell
Res. 2012;22:624–36.

6. Alsaweed M, Hartmann PE, Geddes DT, Kakulas F. MicroRNAs in breastmilk
and the lactating breast: potential immunoprotectors and developmental
regulators for the infant and the mother. Int J Environ Res Public Health.
2015;12:13981–4020.

7. Kakulas F. Breast milk: a source of stem cells and protective cells for the
infant. Infant. 2015;11:187–91.

8. Hassiotou F, Heath B, Ocal O, Filgueira L, Geddes DT, Hartmann PE, Wilkie
TM. Breastmilk stem cell transfer from mother to neonatal organs. FASEB J.
2014;28:216.4.

9. Wolf T, Baier SR, Zempleni J. The intestinal transport of bovine milk
exosomes is mediated by endocytosis in human colon carcinoma Caco-2
cells and rat small intestinal IEC-6 cells. J Nutr. 2015;145:2201–6.

10. Alsaweed M, Lai CT, Hartmann PE, Geddes DT, Kakulas F. Human milk
miRNAs primarily originate from the mammary gland resulting in unique
miRNA profiles of fractionated milk. Sci Rep. 2016;6:20680.

11. Modepalli V, Kumar A, Hinds LA, Sharp JA, Nicholas KR, Lefevre C. Differential
temporal expression of milk miRNA during the lactation cycle of the marsupial
tammar wallaby (Macropus eugenii). BMC Genomics. 2014;15:1012.

12. Le Guillou S, Sdassi N, Laubier J, Passet B, Vilotte M, Castille J, et al.
Overexpression of miR-30b in the developing mouse mammary gland
causes a lactation defect and delays involution. PLoS One. 2012;7:e45727.

13. Laubier J, Castille J, Le Guillou S, Le Provost F. No effect of an elevated miR-
30b level in mouse milk on its level in pup tissues. RNA Biol. 2015;12:26–9.

14. Izumi H, Kosaka N, Shimizu T, Sekine K, Ochiya T, Takase M. Bovine milk
contains microRNA and messenger RNA that are stable under degradative
conditions. J Dairy Sci. 2012;95:4831–41.

Melnik et al. Nutrition & Metabolism  (2016) 13:42 Page 4 of 5



15. Howard KM, Jati Kusuma R, Baier SR, Friemel T, Markham L, Vanamala J, et
al. Loss of miRNAs during processing and storage of cow’s (Bos taurus) milk.
J Agric Food Chem. 2015;63:588–92.

16. Pieters BC, Arntz OJ, Bennink MB, Broeren MG, van Caam AP, Koenders MI,
et al. Commercial cow milk contains physically stable extracellular vesicles
expressing immunoregulatory TGF-β. PLoS One. 2015;10:e0121123.

17. Oh S, Park MR, Son SJ, Kim Y. Comparison of total RNA isolation methods
for analysis of immune-related microRNAs in market milks. Korean J Food
Sci Anim Resour. 2015;35:459–65.

18. Naqvi AR, Fordham JB, Nares S. miR-24, miR-30b, and miR-142-3p regulate
phagocytosis in myeloid inflammatory cells. J Immunol. 2015;194:1916–27.

19. Title AC, Denzler R, Stoffel M. Uptake and function studies of maternal milk-
derived microRNAs. J Biol Chem. 2015;290:23680–91.

20. Fabbri M, Paone A, Calore F, Galli R, Gaudio E, Santhanam R, et al.
MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory
response. Proc Natl Acad Sci U S A. 2012;109:E2110–6.

21. Bryniarski K, Ptak W, Martin E, Nazimek K, Szczepanik M, Szczepanik M, et al.
Free extracellular miRNA functionally targets cells by transfecting exosomes
from their companion cells. PLoS One. 2015;10:e0122991.

22. Zempleni J, Baier SR, Hirschi K. Diet-responsive microRNAs are likely
exogenous. J Biol Chem. 2015;290:25197.

23. Salunkhe VA, Esguerra JL, Ofori JK, Mollet IG, Braun M, Stoffel M, et al. Modulation
of microRNA-375 expression alters voltage-gated Na(+) channel properties and
exocytosis in insulin-secreting cells. Acta Physiol (Oxf). 2015;213:882–92.

24. Krasowska M, Grzywna ZJ, Mycielska ME, Djamgoz MB. Patterning of
endocytic vesicles and its control by voltage-gated Na + channel activity in
rat prostate cancer cells: fractal analyses. Eur Biophys J. 2004;33:535–42.

25. Kopp F, Wagner E, Roidl A. The proto-oncogene KRAS is targeted by miR-
200c. Oncotarget. 2014;5:185–95.

26. Basu Roy UK, Henkhaus RS, Loupakis F, Cremolini C, Gerner EW, Ignatenko
NA. Caveolin-1 is a novel regulator of K-RAS-dependent migration in colon
carcinogenesis. Int J Cancer. 2013;133:43–57.

27. Shurtleff M: Cell-free packaging of microRNAs into exosomes reveals Y- box
protein I as a critical sorting factor. Abstract, ascb annual meeting. 2015; San
Diego, CA, USA

28. Mulcahy LA, Pink RC, Carter DR: Routes and mechanisms of extracellular
vesicle uptake. J Extracell Vesicles 2014, 3: doi: 10.3402/jev.v3.24641.

29. Munagala R, Aqil F, Jeyabalan J, Gupta RC. Bovine milk-derived exosomes
for drug delivery. Cancer Lett. 2016;371:48–61.

30. Izumi H, Tsuda M, Sato Y, Kosaka N, Ochiya T, Iwamoto H, et al. Bovine milk
exosomes contain microRNA and mRNA and are taken up by human
macrophages. J Dairy Sci. 2015;98:2920–33.

31. Kusuma RJ, Manca S, Friemel T, Sukreet S, Nguyen C, Zempleni J: Human
vascular endothelial cells transport foreign exosomes from cow’s milk by
endocytosis. Am J Physiol Cell Physiol 2016, ajpcell 00169 02015 [Epub
ahead of print].

32. Arntz OJ, Pieters BC, Oliveira MC, Broeren MG, Bennink MB, de Vries M, et al.
Oral administration of bovine milk derived extracellular vesicles attenuates
arthritis in two mouse models. Mol Nutr Food Res. 2015;59:1701–12.

33. Baier SR, Nguyen C, Xie F, Wood JR, Zempleni J. MicroRNAs are absorbed in
biologically meaningful amounts from nutritionally relevant doses of cow
milk and affect gene expression in peripheral blood mononuclear cells,
HEK-293 kidney cell cultures, and mouse livers. J Nutr. 2014;144:1495–500.

34. Auerbach A, Vyas G, Li A, Halushka M, Witwer K. Uptake of dietary milk
miRNAs by adult humans: a validation study. F1000Res. 2016;5:721.

35. Gu Y, Li M, Wang T, Liang Y, Zhong Z, Wang X, et al. Lactation-related
microRNA expression profiles of porcine breast milk exosomes. PLoS One.
2012;7:e43691.

36. Alsaweed M, Lai CT, Hartmann PE, Geddes DT, Kakulas F. Human milk cells
and lipids conserve numerous known and novel miRNAs, some of which
are differentially expressed during lactation. PLoS One. 2016;11:e0152610.

37. Li R, Dudemaine PL, Zhao X, Lei C, Ibeagha-Awemu EM. Comparative
analysis of the miRNome of bovine milk fat, whey and cells. PLoS One.
2016;11:e0154129.

38. Na RS, GX E, Sun W, Sun XW, Qiu XY, Chen LP, et al. Expressional analysis of
immune-related miRNAs in breast milk. Genet Mol Res. 2015;14:11371–6.

39. Parigi SM, Eldh M, Larssen P, Gabrielsson S, Villablanca EJ. Breast milk and
solid food shaping intestinal immunity. Front Immunol. 2015;6:415.

40. Melnik BC, John SM, Schmitz G. Milk: an exosomal microRNA transmitter
promoting thymic regulatory T cell maturation preventing the development
of atopy? J Transl Med. 2014;12:43.

41. Shu J, Chiang K, Zempleni J, Cui J. Computational characterization of
exogenous microRNAs that can be transferred into human circulation. PLoS
One. 2015;10:e0140587.

42. Zempleni J, Baier SR, Howard KM, Cui J. Gene regulation by dietary
microRNAs. Can J Physiol Pharmacol. 2015;93:1097–102.

43. Melnik BC. Milk: an epigenetic amplifier of FTO-mediated transcription?
Implications for Western diseases. J Transl Med. 2015;13:385.

44. Melnik BC, John SM, Carrera-Bastos P, Schmitz G. Milk: a postnatal
imprinting system stabilizing FoxP3 expression and regulatory T cell
differentiation. Clin Transl Allergy. 2016;6:18.

45. Macierzanka A, Mackie AR, Bajka BH, Rigby NM, Nau F, Dupont D. Transport
of particles in intestinal mucus under simulated infant and adult
physiological conditions: impact of mucus structure and extracellular DNA.
PLoS One. 2014;9:e95274.

46. Michielan A, D’Incà R. Intestinal permeability in inflammatory bowel disease:
pathogenesis, clinical evaluation, and therapy of leaky gut. Mediators
Inflamm. 2015;2015:628157.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Melnik et al. Nutrition & Metabolism  (2016) 13:42 Page 5 of 5

http://dx.doi.org/10.3402/jev.v3.24641

	Abstract
	Introduction
	Transgenic mice overexpressing miRNA-30b
	miRNA-375 and miRNA-200c/141 KO mice

	Conclusions
	Abbreviations
	Acknowledgement
	Funding
	Authors’ contributions
	Competing interests
	Author details
	References

